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Abstract: Epidemiological studies have linked both traffic-related air pollution (TRAP) and noise to
adverse health outcomes, including increased blood pressure, myocardial infarction, and respiratory
health. The high correlation between these environmental exposures and their measurement
challenges have constrained research on how simultaneous exposure to TRAP and traffic noise
interact and possibly enhance each other’s effect. The objective of this study was to deploy two
novel personal sensors for measuring ultrafine particles (UFP, <100 nm diameter) and noise to
concurrently monitor real-time exposures. Personal UFP monitors (PUFP, Enmont, LLC) were
paired with NEATVIBEwear™ (Noise Exposure, Activity-Time and Vibration wearable), a personal
noise monitoring device developed by the authors (Douglas Leaffer, Steve Doroff). A field-test
of PUFP monitors co-deployed with NEATVIBEwear logged UFP, noise and ambient temperature
exposure levels at 1-s resolution in an adolescent population in Cincinnati, OH to measure real-time
exposures in microenvironments (transit, home, school). Preliminary results show that the concurrent
measurement of noise exposures with UFP is feasible in a sample of physically active adolescent
participants. Personal measurements of UFP and noise, measured prospectively in future studies,
will enable researchers to investigate the independent and/or joint-effects of these health-relevant
environmental exposures.

Keywords: noise; decibels; personal exposure measurement; exposure assessment; sensor technology;
diesel emissions; particle number concentration; PNC; ultrafine particles; UFP; TPN

1. Introduction

Air pollution from traffic exhaust emissions and chronic ambient noise exposure frequently occur
together in urban areas, adversely impacting population health outcomes. Epidemiological studies
have linked both air pollution and noise to common adverse health outcomes such as increased blood
pressure and myocardial infarction [1], and some research has shown adverse effects on pulmonary
function due to the combined effects of air pollution and noise stress [2].

Most of the evidence supporting the link between acute and chronic exposures to air pollution
and increased hospitalizations and mortality from cardio-pulmonary diseases has been based on
epidemiological studies of human exposure to fine particulate matter (PM2.5). Recent studies, including
the Tufts University-led Community Assessment of Freeway Exposure and Health Study (CAFEH)
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have focused on understanding the role of ultrafine particles (UFP) on health effects as a public health
priority [3,4]. UFPs are defined as particles that are 100 nanometers or less in diameter (≤100 nm).
Given their small size, UFPs contribute little to the mass of particulate matter in ambient air but
are the dominant contributors to total particle number (TPN). In single pollutant models, UFPs
were associated with incident wheezing, current asthma, lower spirometric values, and increased
asthma-related emergency department visits among children [5]. Motor vehicles, especially those
powered by diesel engines, have often been cited as a leading source of ambient UFP emissions and of
deleterious effects on human health [6].

Traffic noise has been independently associated with various adverse health outcomes,
most notably cardiovascular morbidity and mortality, including hypertension and ischemic heart
disease [7,8]. Traffic noise has additionally been associated with impaired neurocognitive development
and function in children and adults [9,10], reproductive failure and low birthweight [11], and diabetes
mellitus as a possible metabolic outcome [12]; all of these outcomes are linked to exposure to
air pollution as well. Research on noise exposure to urban cyclists in Belgium has shown that
engine-related traffic noise encountered along the bicyclist’s route is a valid indicator of black carbon
(BC), yet BC does not correlate with noise expressed as A-weighted equivalent sound pressure levels
(LAeq) [13]. The Belgian study suggests utilizing simultaneous measurements of joint noise and TRAP
(BC and UFP) to identify such contrasts in exposures [14].

A-weighting of sound pressure levels is based on early work by Fletcher and Munson [15]
to establish equal-loudness curves dependent on both amplitude and frequency of sound.
The A-weighted sound level metric has been found to correlate well with human perception of
environmental noise and is specified for sound level meters (SLM) currently used for transportation
and community noise studies [16]. Current transportation noise impact assessments are usually based
on broadband A-weighted noise indicator, although many studies have shown that A-weighting can
underestimate the important role low frequency noise (LFN) plays in loudness perception, annoyance,
and speech intelligibility. Despite this, A-weighted sound pressure levels (SPL), or dBA has continued
to be the predominant measurement descriptor for noise assessment [17]. Predictive models have
been developed to estimate measured TPN adjusted for meteorological conditions for specific noise
indicators (L125Hz − L2kHz = low to med frequency noise bands) [18]. A key constraint in the
development and refinement of such models is the difficulty in capturing noise frequencies that
are representative of traffic sources, rather than reliance on the conventional A-weighted SPL, dBA for
model construction. Measuring the spectral content of the noise exposure is necessary to achieve valid
spatiotemporal models [13].

Accurately measuring personal or breathing zone exposure to air pollutants remains a significant
challenge to determining their impact on human health. The need for more precise exposure assessment
is particularly evident for children and adolescents whose exposure can vary widely based on their
time-activity patterns, including time spent outdoors, at home, school, and in vehicles. Of particular
interest is exposure assessment of microenvironments where both UFP and noise exposures are,
a priori, expected to be elevated—for example, in vehicles, during school commutes. This objective
of this pilot field study was to jointly measure both UFP and noise exposures on a personal-scale,
defined as a distance of <30 cm between the sampler and the exposure point (e.g., breathing zone,
ear canals) [19], using wearable monitors for both constituents.

2. Materials and Methods

To characterize personal exposures to both UFP and noise, we utilized two tools, both developed
and validated in laboratory settings and capable of measuring personal-scale exposures to UFP and
noise with high spatiotemporal resolution. The UFP monitoring device is a Personal UFP (PUFP,
Enmont, LLC, Cincinnati, OH, USA) particle counter, model C200 (Figure 1a,b). The PUFP C200 is a
portable, water-based condensation particle counter, with particle size ranging from 6 nm to ≥3 um,
particle counting ranging from 0 to 2.0 × 10 5 particles/cm3, counting accuracy ±10%, response time
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<0.5 s and sampling frequency of 0.1–1.0 s. The PUFP sampler operates on a Li-Po battery with 3 h
of continuous operation and logs particle concentration, local time (Greenwich Mean Time, GMT).
In addition, the PUFP incorporates a GPS receiver, which appends geolocation to corresponding UFP
measurements. All data is recorded to an external micro SD card. The device dimensions are 7 ×
10 × 13 cm and weighs 0.75 kg. Results of an initial field test, prior to this study, found the sensor
to be mobile, rugged, and able to provide accurate spatiotemporal measurements of personal UFP
exposure [20].

We paired the PUFP sampler with NEATVIBEwear™ (Noise Exposure, Activity-Time and
Vibration wearable), a personal noise monitoring device developed by the authors (Douglas Leaffer,
Steve Doroff) that allows users to view their noise exposure levels (A-weighted decibels, dBA) and
monitor time-weighted exposures (Figure 1c).

Figure 1. Photographs of PUFP C200 sampler and a NEATVIBEwear personal noise exposure monitor:
(a) and (b) PUFP C200 Personal UFP particle counter worn by participant; (c) NEATVIBEwear noise
monitor internal components. The dimensions of NEATVIBEwear are 13 × 7 × 4 cm (U.S. quarter
shown for scale). NEATVIBEwear is worn by participants in the mesh pocket of the left shoulder
strap (b). PUFP: Personal UFP.

NEATVIBEwear architecture integrates an AdaFruit®(New York, NY, USA) Feather M0
AdaLogger with an ARM Cortex M0 processor, AdaFruit DS3231 I2C-integrated real-time clock
(RTC) and Bluetooth Low Energy (BLE) messages to the application running on an Android mobile
device. The dimensions of NEATVIBEwear are 13 cm × 7 cm × 4 cm, and the device weighs 0.21 kg.
NEATVIBEwear includes an on-board SD card for data capture and is optionally integrated to a
smartphone to allow for easy visual access to noise exposure levels, which are also displayed on
an integrated OLED 128 × 32 I2C display. NEATVIBEwear incorporates an SPH0645 I2S built-in
digital microphone to detect sound intensity of the microenvironment. The microphone has a working
frequency range of 50 Hz to 15 kHz, a Signal-to-Noise Ratio of 65 dBA and Sensitivity of −29 to
−23 dBFS (decibels relative to full scale), with a digital output (voltage) mapped to an instrument
detection range of 50 to 110 dBA via an algorithm coded in C/C++ programming language. It should
be noted that PUFP samplers generate an internal motor and pump noise of 48 dB, which is at the
lower detection limit of NEATVIBEwear.

The NEATVIBEwear device was calibrated to a REED instruments model SD-4023, class 2
commercial grade SLM with a sound level generator at 94 dB and 114 dB, both at a frequency of
1 kHz. A correlation plot of NEATVIBEwear vs. REED SD-4023 is shown in Figure 2, which indicates
that the calibrated devices are moderately correlated (Pearson’s r = 0.43). The correlation is based
on a co-location test in which both devices monitored ambient noise in several microenvironments:
in-transit (car), college classroom, and a quiet office at 1-s intervals (n = 19,532). The NEATVIBEwear
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internal battery is rechargeable via micro USB port and provides a functional run time of 20 h per
charge. NEATVIBEwear additionally incorporates an internal thermistor temperature sensor with
a primary function to track temperature for calibration of the device’s DS3231 Real Time Clock
(RTC). The digital temperature sensor provides an accurate measurement (~ ±5 degrees F) of ambient
microenvironmental temperature.

Figure 2. Correlation plot NEATVIBEwear vs. REED SD-4023 sound level meters.

PUFP and NEATVIBEwear samplers were field-deployed in February 2018 on a subset of
adolescent participants in Cincinnati, OH enrolled in the Ecological Momentary Assessment and
Personal Particle Exposure (EcoMAPPE) Study. The study protocol was approved by the Cincinnati
Children’s Hospital Medical Center (CCHMC) Institutional Review Board (IRB), and all participants
provided signed consent (caregivers) and assent (adolescents) prior to study participation. Briefly,
participants in the EcoMAPPE Study (ages 13–17) completed two personal sampling sessions of seven
consecutive days each (14 total personal sampling periods/participant): one session during summer
months and one session in winter. On each sampling day, participants wore the PUFP C200 for ~3 h.
Participants are instructed to operate the sensor and measure exposures at different times throughout
the sampling period and in different environments (i.e., while at school, in transit, etc.). In addition
to the PUFP C200, EcoMAPPE participants received a study smartphone to link other sensors and
apps including the PiLR Health Ecological Momentary Assessment (EMA) app. The PiLR EMA app
prompts participants to answer brief questionnaires throughout the day based on time, location (e.g.,
proximity to home, school), and the smartphone’s accelerometer.

Microenvironmental UFP exposures are assigned based on the speed and distance from participant
specified locations: home (100 m), schools (400 m), and other (i.e., work; 400 m) locations. UFP
concentrations measured outside of these locations exhibiting accelerometer speeds greater than 2 m/s
are categorized as occurring while in transit. Measurements that are not categorized based on location
and exhibit speeds <2 m/s are assigned to ‘other.’ Participants also record locations where they perceive
high air pollution to be present and may upload images to give a visual depiction of their current
environment. GPS data was also logged for the entirety of the sampling period using the madresGPS
app; a Fitbit Charge 2 (San Francisco, CA, USA) to monitor heart rate, sleep quality, and activity; and a
Spirobank Smart (MIR Group, Rome, Italy) to assess lung function. For the present analyses, a subset
of EcoMAPPE participants was randomly selected to additionally wear the NEATVIBEwear monitor.
The objective of this analysis is to demonstrate the usability of the NEATVIBEwear device and examine
the correlation between personal noise and UFP measurements. Microenvironmental temperature
exposures were also measured by NEATVIBEwear as an additional parameter of interest.
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3. Results

3.1. Personal-Scale, Real-Time Monitoring of Microenvironmental UFP Exposures

A field test of the PUFP C200 sampler and NEATVIBEwear noise monitor was conducted at
the beginning of the joint deployment period (February 2018) for seven study participants. Two
illustrative cases are presented here as examples of co-exposures to both UFP and noise, measured
on a personal scale. Participant #300012, an adolescent female, age 13 at the time of participation
in the study, she wore both personal exposure monitors on 28 February 2018, a routine mid-winter,
mid-week school day. To monitor and assess real-time UFP concentrations with associated changes in
microenvironments, we plotted a time-series plot of UFP (measured as PNC (# particles/cc)) for the 28
February 2018 sampling date, colored and annotated by microenvironment (i.e., while in transit, at
home, other; Figure 3).

Figure 3. Plot of UFP exposure, colored by microenvironment, participant # 300012 (28 February 2018).

3.2. Data Visualization of Concurrent UFP and Noise Personal Exposure Levels

To better visualize and understand the relationship between personal exposure to UFP and
concurrent noise exposure from transportation sources, we plotted time-series subplots of the
participant’s 1-s continuous exposure levels to both UFP and noise (dBA), with 1 min average dBA
also plotted with a moving mean data smoothing function (MATLAB R2018a), presented in Figure 4.

Joint data collection for participant # 300012 from 14:25 to 15:15HRS US Eastern Standard Time
(EST) shows an increase in both UFP and noise exposures above baseline readings beginning at
approximately 14:45HRS, while the participant was in transit (Figure 3). PNC levels (Figure 4, upper
plot) increased above a baseline mean of 32.7 particles/cc (baseline standard dev. = 5.8; baseline
median = 33 particles/cc) recorded during the first 3 min of the monitoring period to a maximum
of 103,000 particles/cc at peak exposure at approximately 14:45HRS. Following peak UFP exposure,
particle concentrations decreased during the final 10 min of the monitoring period (15:05 to 15:15HRS)
to a post peak exposure mean of 3634 particles/cc (post-peak standard dev. = 1338; post-peak median
= 3210 particles/cc), fully 2 orders of magnitude higher than the initial baseline UFP concentrations.
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Figure 4. Time-series subplots of PNC (#/cc) and Noise (dBA), participant # 300012—28 February 2018.

Concurrent noise exposures logged by NEATVIBEwear indicate that noise levels also increased
during the transit (car) microenvironment for participant # 300012. NEATVIBEwear measured and
recorded noise exposure levels with an in-transit mean of 51.8 dBA (in-transit standard dev. = 5.4;
in-transit median = 49 dBA) during a 20-min baseline period prior to the UFP peak, escalating gradually
during and following the UFP exposure to a maximum of 98 dBA (Figure 4, lower plot). Noise levels
returned to a secondary baseline with a post-peak mean of 58.2 dBA (post-peak standard dev. = 6.7;
post-peak median = 58 dBA) during the final 17 min of the sampling period at 14:58 to 15:15HRS
(Figure 3, lower plot). Descriptive statistics for participant # 300012 for the full data set of UFP exposure
(PNC, particles #/cc) and noise exposure (dBA) are presented in Table 1.

Table 1. Descriptive statistics for participant # 300012.

Feb 28, 2018 (1) PNC (#/cc) Noise (dBA)

minimum 1 41
maximum 103000 98

mean 11765 59.3
median 5620 56

standard dev. 17342 11.8
cv (2) 1.47 0.20

skewness 2.92 1.04
kurtosis 11.5 3.11

(1) # observations, n = 3169; (2) cv = coefficient of variation. PNC: particle number concentration.

Figure 5 presents a scatter plot with marginal kernel density plots for log(e) PNC and noise
exposure grouped by microenvironment (transit, other) for participant # 300012. The scatter plot
suggests that both the highest UFP concentrations and dBA levels which participant # 300012 was
exposed to occurred during transit (including in car) (PNC > 30,000 particles/cc; dBA > 80). The lowest
UFP concentrations (<3000 particles #/cc) and noise levels (<80 dBA) occurred while the participant
was in other microenvironments (including inside). Given that both PNC and noise (dBA) are positively
skewed, non-normal distributions (PNC skewness = 2.92; kurtosis = 11.5; dBA skewness 1.04, kurtosis
= 3.11; n = 3169) (Table 1), we plotted a kernel distribution (Figure 5) since a parametric distribution
cannot properly describe the data, and avoided making assumptions about the distribution of the data.
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Figure 5. Scatter plot and kernel density plots of log PNC and noise, participant # 300012
(28 February 2018).

3.3. Heart Rate Measurements in Participants Exposed to UFP, Noise and Microenvironmental Temperature

Participants # 300012 and # 300041 were instructed to operate both the PUFP C200 and
NEATVIBEwear sensors and measure exposures at different times throughout the sampling period
and in different environments (i.e., while at school, in transit, etc.). A Fitbit Charge 2 (was additionally
distributed to both participants to monitor heart rate, sleep quality, and activity. Participant # 300012
did not wear the Fitbit during the selected monitoring date (28 February 2018). No heart-rate data was
recorded for this participant for this analysis. Participant # 300041, an adolescent male, age 16 at the
time of participation in the study, wore the Fitbit on two consecutive days (21–22 June 2018). Figure 6
displays time-series plots for adolescent participant # 300041 illustrating the microenvironment in
which the UFP exposures occurred. For this participant, all of the UFP exposures occurred while
the participant was inside (at home), on both sampling days. While not transportation-related
exposures, the time-series plots and data analysis for participant # 300041 are presented herein as
illustrative examples of a home-bound participant’s personal exposure regimes in comparison to the
transportation-source personal exposure of participant # 300012.

To assess and evaluate real-time microenvironmental exposures and their effects on heart-rate,
we plotted time-series plots of UFP and dBA with temperature as an added parameter of interest.
Figures 7 and 8 present these time-series plots for adolescent participant # 300041 during two
consecutive early summer weekdays, 21 and 22 June 2018. Both sampling days recorded an elevated
UFP exposure period occurring for approximately one hour, followed by an extended decreasing
exposure period of similar or longer duration (PNC, particles #/cc, Figures 7 and 8 upper plots).
Compared to the transportation-related UFP exposures of participant # 300012, indoor (at home) UFP
exposures in participant # 300041 were between 50–85% lower. Noise exposures (dBA, Figures 7 and 8
middle plots) were within a narrow interquartile range (IQR) (21 June: IQR = 8 dBA; 22 June: IQR
= 6 dBA) and showed little relative variability between sampling dates (21 June: CV = 0.11; 22 June:
CV = 0.09, Table 2). Microenvironmental temperature exposures recorded by the a NEATVIBEwear
internal thermistor are plotted as dotted lines in the middle subplots in Figures 7 and 8. Given the
indoor exposure regimes, microenvironmental temperature readings were limited to a narrow range
(Table 2).
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Figure 6. Plots of UFP exposure by microenvironment, participant # 300041 (21–22 June 2018).

Figure 7. Time-series subplots of PNC, Temp., dBA, Heart Rate: participant # 300041 (21 June 2018).

Figure 8. Time-series subplots of PNC, Temp., dBA, Heart Rate: participant # 300041 (22 June 2018).
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Table 2. Descriptive statistics for participant # 300041.

21 June 2018 (1) PNC (#/cc) Noise (dBA) Temp. (oF) (3) Heart Rate (4)

minimum 1310 42 76.6 48
maximum 51700 93 81.2 93

mean 14444 55.7 79.3 61.7
median 8710 55 79.3 59

standard dev. 13572 5.9 1.4 9.3
cv 0.94 0.11 0.02 0.15

22 June 2018 (2) PNC (#/cc) Noise (dBA) Temp. (oF) (3) Heart Rate (4)

minimum 354 42 78.8 70
maximum 13500 91 80.3 155

mean 3001 54.6 79.7 112
median 1200 54 79.7 109

standard dev. 3563 5.1 0.28 15.7
cv 1.2 0.09 0.004 0.14

(1) # observations, n = 12127; (2) n = 9612; (3) NEATVIBEwear microenvironmental temperature; (4) BPM.

Descriptive statistics for participant # 300041 UFP exposure (PNC, particles #/cc), noise exposure
(dBA), microenvironmental temperature (degrees F), and heart rate (HR, beats per minute, BPM) are
displayed in Table 2.

Heart-rate was measured during both sampling days (21–22 June 2018) in participant # 300041,
who wore the Fitbit device. While there was little relative heart-rate variability between monitoring
dates (21 June: CV = 0.15; 22 June: CV = 0.14, Table 2), the participant’s heart-rate was elevated
on 22 June, although heart-rate data from 13:04 to 13:33 HRS (during the decline of the UFP
peak) are missing. For a visual comparison of how the distribution of each covariate (UFP, noise
microenvironmental temperature) varies by sampling day with the outcome variable (heart-rate), we
plotted notched boxplots of each personal exposure parameter below in Figures 9 and 10.

Figure 9. Boxplots of UFP (# particles/cc) and Noise (dBA), participant #300041 (21–22 June 2018).

Figure 10. Boxplots of Temp. (oF) and Heart-Rate (BPM), participant #300041 (21–22 June 2018).
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4. Discussion

We found that personal-scale, microenvironmental exposure measurement with novel, wearable
sensors is feasible for assessment and evaluation of co-exposures of UFP and noise on health outcomes
(heart-rate). While participants in this field study proved to be cooperative in wearing the sensors,
their compliance with study protocols was intermittent and, to some extent, beyond the control
of the researchers. However, the data collected in this field study has proven to be valuable for
protocol refinement in the remainder of the study (end date = February 2020) and will inform future
personal-scale exposure assessment studies of similar design. We also found that measurement of
real-time microenvironmental temperature using a wearable sensor provides an accurate measurement
(~ ±5 degrees F) of ambient microenvironmental temperature, which is useful for understanding UFP
and temperature collinearity. Most exposure studies utilize average daily temperature values from
fixed site meteorological records as a proxy for actual exposures, which may vary considerably as
participants move between microenvironments [21]. Transportation-related air pollution (TRAP)
was measured successfully here in real time using a PUFP C200 wearable sampler as particle
number concentration (# particles/cc). This serves as a proxy for UFP exposure. UFP measurements
were collected concurrently with noise exposure data (dBA) by NEATVIBEwear, a wearable noise
monitoring device.

4.1. Interpretation of Measurements of Participants Exposed to UFP and Noise

Field study data from adolescent participant # 300012, who reported their exposure categories as
“transit” or “car” and “inside” or “home” have illustrated the value and relative convenience of using
wearable sensors for personal-scale monitoring of the co-exposures of UFP and noise. Our results
for participant # 300012 suggest that traffic-related UFP and transportation noise exposures can
be measured in real time with current sensor technology. The UFP exposures plotted in Figure 3
(participant # 300012) are illustrative of a typical commute pattern, which, in this study, featured
a commute from school followed by an inside or indoor exposure period. The recorded PNC
measurements suggest an immediate and short-term exposure to UFP while the participant changed
microenvironments (other to transit) (Figure 3).

Concurrent noise exposures logged by NEATVIBEwear (Figure 4, lower subplot) indicate that
noise levels also increased during the transit (car) microenvironment for participant # 300012. There
was approximately a 10 min time-lag between peak UFP concentration (103,000 particles/cc) and peak
noise exposure (98 dBA), sub-plotted in Figure 4. The elevated peak in UFP exposure might correlate
with so-called “stop and go” traffic, particularly if the participant’s vehicle (and PUFP sampler) was
a short distance to the exhaust tailpipe of the preceding vehicle. This distance and vehicle speed
could potentially be established with the GPS and accelerometer data the study participants logged
while in-transit. Another possible explanation for the UFP vs. noise time lag could be that participant
#300012 may have travelled behind a high UFP-emitting, diesel vehicle previous to the peak in dBA
and UFP exposures peaked at a period before the vehicle increased in acceleration. We have found
previously that UFP concentrations may be higher at intersections due to increased acceleration of the
vehicles. The gradually increasing and elevated noise levels (Figure 4) likely correlate with a higher
speed portion of the vehicle trip. This is attributed to rolling tire noise and aerodynamic noise of the
vehicle itself. At a higher speed, the rapid drop in UFP concentration (Figure 4) may be due to more
efficient in-vehicle ventilation and longer distance to preceding vehicles [22].

Given these possible scenarios, the scatter plot of log UFP vs. noise presented in Figure 4 does
not indicate a correlation between these variables for this participant but does suggest that both the
highest UFP concentrations and dBA levels which participant # 300012 was exposed to occurred
during transit and the lowest UFP concentrations and noise levels occurred while the participant was
in other microenvironments (including inside). Establishing such a correlation is feasible in future
field work using wearable sensors for personal-scale exposures across multiple participants in varying
microenvironments. For more precise correlations of UFP and noise, analyzing the spectral content of
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the in-transit noise would be informative to verify if the low frequency content of the measurements
correlates with the UFP exposure inside the vehicle. We believe that spectral analysis of selected
noise peaks will demonstrate low frequency noise (250 Hz and below) to be correlated with higher
UFP levels predominately from diesel exhaust emissions from large trucks and heavier gross weight
vehicles, with lower UFP concentrations corresponding with high frequency noise (>2000 Hz) [23].

4.2. Challenges in Measuring Health-Based Outcomes in Personal-Scale Exposure Studies

Jointly measuring UFP and noise exposures on a personal-scale (<30 cm between the sampler and
the exposure point—i.e., breathing zone, ear canals) using wearable monitors for both UFP and noise
is a feasible approach. Integration of a Fitbit device to monitor heart rate, sleep quality, and activity,
and a Spirobank Smart to assess lung function complements the other wearable instruments deployed
here to form a suite or set of technologies to better understand possible relationships between UFP and
noise exposures and health outcomes. While measurement of personal-scale UFP is still an emerging
approach, the literature cites only one study that measured exposure and health effects in children
using personal UFP monitors [24]. Integration of low-cost, accurate and precise noise monitoring
devices into UFP monitoring studies remains an enticing possibility to disentangle the confounding
presented by these simultaneous exposures. The rate limiting step to date has been mainly one of
instrumentation and measurement techniques.

An important objective of this field study was to measure health-based outcomes in adolescent
participants based on exposure to real-time UFP concentrations with both noise and changes
in microenvironmental temperature exposure. Based on the quality of data presented herein,
microenvironmental monitoring of UFP and noise with the paired PUFP sampler and NEATVIBEwear
devices (Figure 1) presents a feasible approach to collecting more fine-grained and robust exposure
data than other methods such as fixed UFP monitoring sites or noise proxies to predict UFP exposures.
Furthermore, the data presentation illustrates the potential for opportunities as well as difficulties in
collecting and evaluating personal-exposure, real-time monitoring data. Additionally, the data quality
output from personal-scale monitoring sensors deployed in this study facilitates the ability to construct
a regression-based model in which the covariates UFP, noise and microenvironmental temperature are
the predictor variables and heart-rate as the outcome and is dependent on any of the predictors and/or
their interaction. Such a model could be further stratified by both microenvironment of exposure and
activity category.

4.3. Advantages in Measuring Real-Time Noise Exposures Using Wearable Sensors

The traditional methods of conducting noise measurement studies involve a collection of noise
samples manually, using professional sound level meters (SLMs) that must comply with national
and international standards. The relative cost of high-grade SLMs and trained personnel required
to calibrate and measure noise levels presents financial and logistical drawbacks [25]. The recent
proliferation of smartphones, their constant network connectivity, the built-in GIS functionality,
and numerous “apps” available for user interactivity present distinct advantages over unconnected
and often bulky and expensive professional SLM instruments [26].

However, reliance on smartphones for sound level data collection in noise exposure studies
presents its own drawbacks, such as the micro-electro-mechanical-system (MEMS) built-in
microphones used in smartphones. MEMS microphones have certain limitations due to their
miniature size and circuit board placement, which affect their dynamic range and signal-to-noise ratio
response [27]. Another major constraint presented by the built-in microphones is the lack of access and
inability to perform periodic or pre-measurement calibration. Additionally, smartphones are difficult
to utilize as dedicated SLM devices in exposure studies due to the user/operator’s frequent needs to
answer phone calls, send and receive texts messages, run applications and other uses which decrease
battery life.



Int. J. Environ. Res. Public Health 2019, 16, 308 12 of 14

NEATVIBEwear was conceived, designed and engineered to be both a stand-alone wearable noise
monitoring device of low cost, with functionality to log noise exposure data to an on-board SD card
for data capture and is optionally integrated to a smartphone to allow for easy visual access to noise
exposure levels. A study published in the Journal of the Acoustical Society of America (JASA) suggests
that using external calibrated microphones greatly improves the overall accuracy and precision of
smartphone sound measurements and removes much of the variability and limitations associated
with the built-in smartphone microphones [26]. By integrating an external, calibrated microphone
into the NEATVIBEwear device, with flexibility to re-calibrate the microphone unlike a smartphone,
we anticipate the ability to obtain measurements within ±2 dB of a SLM reference.

4.4. Limitations of This Study

A possible limitation in the use of NEATVIBEwear as a dedicated noise exposure monitoring
device is the inability of the device to differentiate recorded noise patterns such as traffic noise and
other sounds, including conversation, shouting, laughter or background music playing. This could
potentially be addressed with a band-pass filter device that passes noise frequencies within a certain
range and rejects (attenuates) frequencies outside that range, or via development of an algorithm to
post-process the raw noise data to distinguish between environmental noise and the aforementioned
interfering sounds. The latter approach was achieved with good results in a health study conducted in
Peru in which low-cost wearable microphones were deployed on patients recovering from pulmonary
tuberculosis (TB) to record and analyze coughing episodes and distinguish TB-related coughing from
environmental and other background interfering noise [28].

NEATVIBEwear, in its current release, does not allow for 1/3-octave band or spectral
measurements of traffic noise. This could be possible with an extended, re-engineered version
of NEATVIBEwear in a follow-up (future) study or with a commercial-grade sound level meter.
For validation of spatiotemporal UFP and noise models, measuring the spectral content of the noise
exposure is necessary [13].

To our knowledge, this field program is the first study to integrate real-time, wearable sensors to
jointly measure both UFP and noise exposure on a personal-scale with direct, real-time measurement
of a health-based outcome (heart-rate) in study participants. Other strengths of this study include
the ability to demonstrate direct measurement of microenvironmental temperature as a potential
predictor, along with UFP and/or noise and their interactions, of heart-rate as a health-based outcome.
This challenges the usual reliance on models of average daily temperature values from fixed site
meteorological records as a proxy for actual exposures, which may vary considerably as participants
move between microenvironments [21]. A further strength of the full prospective study, as it progresses,
is the ability to network via the cloud multiple NEATVIBEwear devices worn by different participants
simultaneously to produce a real-time noise exposure map of the study area and compare this with
UFP readings for establishment of high exposure risk zones both spatially and temporally.

5. Conclusions

The primary objective of this field study was to deploy two novel personal sensors for measuring
ultrafine particles (UFP) and noise to jointly monitor real-time exposures in microenvironments.
The study focused on evaluating the feasibility of simultaneously measuring personal exposures to
UFPs and noise with focus on the quality of the data and its value for interpretation. A secondary
objective of this analysis was to demonstrate the usability of the NEATVIBEwear device developed for
this study as an easy to deploy tool for integration into ongoing and future exposure studies where
noise exposure is a parameter of interest.

This pilot field study demonstrates that both UFP and noise were feasibly measured on a personal
scale for adolescent participants in different and changing microenvironments. Accurately measuring
personal exposure to air pollutants, particularly UFP, remains a critical limitation to understanding
their impact on human health. This field study demonstrates the ability of new tools to accurately
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measure personal UFP exposure, noise and temperature with high spatiotemporal resolution. Such
improvements in exposure assessment are likely to benefit future applications in epidemiologic studies.
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